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Abstract

Objective: This proof-of-concept study was to investigate the relationship between photobiomodulation (PBM)
and neuromuscular control.

Background: The effects of concussion and repetitive head acceleration events (RHAEs) are associated with
decreased motor control and balance. Simultaneous intranasal and transcranial PBM (itPBM) is emerging as a
possible treatment for cognitive and psychological sequelae of brain injury with evidence of remote effects on other
body systems.

Methods: In total, 43 (39 male) participants, age 18—69 years (mean, 49.5; SD, 14.45), with a self-reported history of
concussive and/or RHAE and complaints of their related effects (e.g., mood dysregulation, impaired cognition, and
poor sleep quality), completed baseline and posttreatment motor assessments including clinical reaction time, grip
strength, grooved pegboard, and the Mini Balance Evaluation Systems Test (MiniBEST). In the 8-week interim, par-
ticipants self-administered itPBM treatments by wearing a headset comprising four near-infrared light-emitting diodes
(LED) and a near-infrared LED nasal clip.

Results: Posttreatment group averages in reaction time, MiniBEST reactive control subscores, and bilateral grip
strength significantly improved with effect sizes of g = 0.75, g = 0.63, g = 0.22 (dominant hand), and g = 0.34
(nondominant hand), respectively.

Conclusion: This study provides a framework for more robust studies and suggests that itPBM may serve as a
noninvasive solution for improved neuromuscular health.

Keywords: photobiomodulation, light therapy, neuromuscular control, repetitive head acceleration events, motor
control
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Introduction

pproximately 3.8 million sport- and recreation-related
concussions occur annually in the United States." The
effects of concussion, including persistent long-term issues
with concentration and physical skills,?> is a growing concern.
Equally concerning are the effects of repetitive head impacts
(RHIs), also known as repetitive head acceleration events
(RHAEs). RHAE has the same meaning as RHI; however, it is
emerging as a preferred term because it inherently indicates that
the brain is experiencing translational and/or rotational move-
ment because of external forces regardless of the source (blast
or mechanical blow) or location (head or body) of the impact
forces. Although RHAE may include concussions or mild trau-
matic brain injury (mTBI), most do not result in any acute
detectable clinical symptoms. However, the cumulative effect
of RHAE, like concussion or mTBI, could progress to traumatic
encephalopathy syndrome (TES), a clinical disorder associated
with chronic traumatic encephalopathy (CTE).* An athlete may
experience over 100 RHAEs per season.>’ Although the ath-
lete may be asymptomatic, RHAEs result in microstructural
and functional changes in the brain similar to that seen in con-
cussion or mTBI,3!° leading to altered motor unit recruitment
strategies, increased acute corticomotor inhibition,'" and other
neuromuscular impairments, such as reduced dynamic balance
or reaction time, in the long-term.'%-16
Photobiomodulation (PBM), more specifically simultane-
ous intranasal and transcranial PBM (itPBM), is emerging as a
candidate for therapy in addressing the cognitive and psycho-
logical sequelae resulting from brain injury.!”!3 In transcranial
PBM (tPBM), a headset is worn with light-emitting diodes
(LEDs) positioned on the scalp to target cortical brain regions
with primarily near-infrared (NIR) light (810 nm). In intra-
nasal PBM (iPBM), an LED nasal applicator is positioned in a
nostril where NIR photons can be absorbed by the capillaries
in the nasal epithelium.

Mechanisms of PBM

Theories and evidence describing the mechanism of action of
PBM for both brain and other tissues and are well docu-
mented.'”° The prevailing hypothesis is that itPBM alleviates
mitochondrial dysfunction related to the head insults.!”3! Specif-
ically, emitted photons are absorbed by the cytochrome c
oxidase (CCO) enzyme in the mitochondrial electron trans-
port chain,?%-22:32 which leads to a cascade of biochemical
events along several pathways. The end results include
enhanced energy production, increased cerebral blood and
lymphatic flow,3%33 the promotion of cell survival,3?
reduced excitotoxity and inflammation, and potentially
increased angiogenesis, neurogenesis, and synaptogene-
sis.25:2% PBM also stimulates the proliferation and mobiliza-
tion of stem cells that release trophic factors that protect and
repair neural tissue.>*>® Another theorized mechanism is the
entrainment of neuro-oscillatory waves disrupted by concus-
sion3"° because of the pulsation of the light.*°

Some of these mechanisms may exhibit effects beyond the
target organs, implying that PBM may affect nontargeted
body systems. Studies employing remote PBM resulted in
increased mobility, cognition, dynamic balance, and sense of
smell in patients with Parkinson’s disease,*! and cognitive
capacity, changes in depression, weight, and blood pressure in
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mouse models.*? To date, literature on itPBM affecting other
systems in a population with RHAE exposure is sparse. How-
ever, a case study including a former professional football
player exhibiting TES not only showed brain functional
improvements,*? but also reported gains in physical strength
(Personal Communication, L. Carr, Aug. 2019), implying that
mechanisms of itPBM may demonstrate a systemic effect
resulting in improved or preserved neuromuscular health.

The purpose of this study was to examine effects of itPBM
on neuromuscular health. As part of a larger proof-of-concept
study to investigate the relationship of itPBM on brain con-
nectivity, cognitive function, and psychological health in indi-
viduals exposed to RHAE, measures of neuromuscular health,
including reaction time, dexterity, grip strength, and balance,
were collected in former athletes with a self-reported history
of RHAE. Grip strength, reaction time, and postural control
are functional biomarkers of health and tend to decline with
age.*+*8 Regardless of participant age, we hypothesized that
the light-stimulated processes provide additional benefits to
systems subserving physical performance measures.

Methods
Participants

We enrolled 49 participants (45 males). Six did not complete
the study for various reasons (e.g., unable to travel or loss of
interest), leaving 43 (39 male) participants between the age of
18 and 69 years old (M = 49.5, SD = 14.45). All participants
self-reported a history of mTBI and/or RHAESs, most because of
participation in sports (recreational, high school, collegiate, and/
or professional), and one as a result of intimate partner violence.
Participants also reported at least one complaint commonly
associated with effects of head impacts, for example, difficulty
with mood regulation, memory, or sleep. Exclusion criteria
included a history of neurological disease (i.e., dementia, stroke,
epilepsy, tumor), history of severe psychiatric disorder (i.e.,
bipolar, schizophrenia, psychosis), and/or MRI contraindica-
tions. All enrollees signed informed consent documents
approved by the Institutional Review Boards at the University
of Utah and Wahlen VA Salt Lake City Healthcare System.

We administered the Ohio State University Traumatic Brain
Injury Identification (OSU-TBI),* survey, during which partici-
pants self-reported the duration of participation in the activity
that exposed them to RHAEs and the severity and number of
head hits. All participants reported head impacts with at least
momentary (5-30 sec) loss of consciousness and/or posttrau-
matic amnesia. No participants disclosed a history of mild com-
plicated, moderate, or severe TBI; however, most described
experiencing head impacts such as “stingers” or “getting their
bell rung,” which may have been considered concussions had
they been diagnosed (see Table 1 for a summary).

Study design

This study was a nonrandomized proof-of-concept design
that used active treatment only. Participants were assessed at
two time points, prior to and 8—10 weeks after starting at-
home itPBM treatments. The participants were instructed to
maintain their normal routines and not start any new activities
(e.g., resistance and/or balance training or brain training) dur-
ing this time period.
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TABLE 1. PARTICIPANT INFORMATION
N M SD Min Max

Biological sex

Male 39

Female 4
Age at baseline 45.90 14.45 22 69
Years of education 15.90 2.04 12 22
Follow-up interval (days) 43 61.95 7.78 55 97
Age at first head impact/acceleration event 14.50 8.57 24 45
Number of head impacts/acceleration events 7.20 6.04 0 25
Duration of exposure to head acceleration events (years) 12.39 6.14 4 30
Complaints of mood regulation 17
Complaints of difficulty with memory and/or cognition 28
Complaints of poor sleep quality 43

“Not a personal memory; based on a family story of the participant being hit by a truck as a toddler. No other details are known.

Treatment protocol

For this study, participants self-administered itPBM with the
Vielight Neuro Gamma PBM headset (Toronto, Canada) worn
over the scalp and/or hair. The device has four LEDs, each emit-
ting NIR light (810 nm), pulsating at 40 Hz (50% duty cycle)
over a beam spot of 1 cm2, three with irradiance of 100 mW/cmz,
and the fourth at 75 mW/cm?. The LEDs are placed to target cort-
ical nodes of the default mode network: the midline bilateral
medial prefrontal cortex, left and right angular gyrus areas, and
midline bilateral precuneus (see Fig. 1). In addition, the device
includes an intranasal probe with one LED emitting pulsed NIR
light with irradiance of 25 mW/cm? inside the nasal cavity target-
ing the olfactory bulbs and orbitofrontal cortex (see Table 2). Par-
ticipants were instructed to administer a 20-min treatment every
other day for 8 weeks and given a log sheet to track usage.

Clinical performance tests

The clinical performance tests included four assessments:
clinical reaction time, grooved pegboard, grip strength, and
the Mini Balance Evaluation Systems Test (MiniBEST). As
previously noted, this study is part of a larger study; therefore,
these assessments occurred in the same visit with cognitive
and neuropsychological assessments and a brain MRI scan.

Clinical reaction time

The clinical reaction time test was administered according
to the protocol described by Eckner et al.,° Briefly, partici-
pants sat with the forearm of their dominant hand resting com-
fortably on a table and their hand extended past the edge of the
surface with their thumb and fingers forming a “C,” similar to
holding a cup. The examiner pinched one end of a 1.3-m-long
marked stick embedded in a weighted rubber disk and sus-
pended the disk between the fingers and thumb of the partici-
pant’s hand. The examiner released the stick and participant
closed their hand to catch it as quickly as possible. The partici-
pant performed 10 total trials, with the first 2 used as practice.
The distance the stick dropped was converted into a reaction
time (in milliseconds) using the formula for a body falling
under the influence of gravity (d = 1/2gt2), where d is the dis-
tance, g is the acceleration due to gravity, and 7 is the time.

Grooved Pegboard Test

Manipulative dexterity was assessed using the Grooved
Pegboard Test.,’! The metal board consists of 25 keyhole
shaped slots with varying orientations, arranged ina 5 X 5 grid
(Lafeyette Instruments, Lafayette, IN). Each peg has a 3-mm-
diameter cylindrical shape, save for a ridge that runs along the
length of the peg, such that the peg will only fit in the board if
the ridge is aligned with the notch of a slot. Participants
inserted pegs into the holes as quickly as possible in a row-
by-row manner, completing the exercise once with each
hand, starting with their dominant hand. We recorded the
time the participants took to complete the task.

Grip strength

Grip strength was measured using a Jamar Plus Dynamom-
eter (Performance Health, Chicago, IL). After adjusting the
handle for proper grip, the participant held the dynamometer
down at their side and squeezed the handle as hard as possible
for 3 sec, completing three trials for each hand. We recorded
the average force.

Mini Balance Evaluation Systems Test

The MiniBEST,>? assessment includes 14 tasks across
four domains: anticipatory postural adjustments, reactive
postural control, sensory orientation, and dynamic gait.,>3
Each task used a three-level ordinal scale to score, with a
maximum total score of 28. Outcome measures included
the overall miniBEST score and individual subscores for
each domain.

Statistical analysis

Motor tests were scored per their respective standards. Data
from some participants were excluded because of limb injuries
that would affect test results (e.g., lacerations on fingertips).
Shapiro—Wilk tests were used to evaluate normality of measure-
ments for all continuous variables. Separate linear mixed-effect
analyses were performed using the maximum likelihood
method for parameter estimations. The response variables were
the motor outcome measures, the fixed effects terms were “age”
and “‘visit time” (with no interaction term), and random effects
using random intercepts by “participant.” Normality was
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FIG. 1. Placement of the itPBM device. The Vielight Neuro Gamma PBM headset fits over the scalp with the four

near-infrared LEDs targeting cortical nodes of the default mode network: the medial prefrontal cortex, located high on
the center front forehead area at the center front hairline; the bilateral parietal cortices located in the left and right
angular gyrus areas; and the precuneus, located at the junction of the sagittal suture line with the left and right lamb-
doid suture lines. An intranasal applicator is positioned over capillaries in the nasal epithelium targeting olfactory bulbs
and the orbitofrontal cortex. The headset’s four LEDs emit pulsed NIR light (810 nm), over a beam spot size of 1 cm?,
three at an irradiance of 100 mW/cm?, and the fourth at 75 mW/cm?. The nasal applicator consists of one LED emitting
pulsed NIR light at an irradiance of 25 mW/cm?”. Image source: Vielight Neuro Gamma Operational Manual version
1.1; 17 April 2019, pg 8. Used with the permission from Vielight Inc. itPBM, intranasal and transcranial photobiomo-

dulation; LED, light-emitting diode; NIR, near infrared

confirmed through examination of the residuals of each model.
A Wilcoxon’s signed-rank test was used to evaluate change in
performance on measures for non-normal variables. To control
for multiple comparisons, the Benjamini—-Hochberg false dis-
covery rate procedure was employed for all null hypothesis
tests, with the statistical significance threshold kept at o = 0.05.
All p values are reported with 95% confidence intervals (CIs),
and exact p values are reported for all nonparametric compari-
sons. For all comparisons, Hedges g is provided as a measure
of effect size, where |g| = 0.20, 0.50, and 0.80 are consid-
ered small, moderate, and large effects, respectively.’*>>
Statistical analyses were performed using Matlab R2021a
(2021; College Station, TX: MathWorks).

Results

The protocol for itPBM intervention was 8 weeks; however,
because of travel constraints or personal conflicts, some partici-
pants were unable to return for posttreatment testing until
10-12 weeks, during which time they continued the treat-
ment. Reported compliance rate for itPBM usage was 92%.

A summary of pre- and posttreatment assessment results is
provided in Table 3. Pretreatment times for each hand on the
grooved pegboard test, but not other measures, were associated
with age. The fitted regression models were as follows: dominant
hand time = 53.2 + 0.53 *age; nondominant hand time = 54.2 +
0.64*age. The overall regressions were statically significant [R* =
0.27, F(1,40) = 14.9, p = 0.0004; R* = 0.27, F(1,40) = 14.7, p =
0.0004, respectively.] Significant improvements related to
treatment visits were seen in three of the four test domains
(Table 4). Average reaction time improved by 19.39 ms
(95% C1[12.24,26.54], p < 0.001) from pre- to posttreatment
visits, with an effect size of 0.75, and was not influenced by
age. Average dominant-hand grip strength increased from base-
line by 2.70 kg (95% CI [0.89, 4.52], p = 0.003), whereas non-
dominant hand grip strength increased by 3.73 kg (95%
[2.10, 5.36], p < 0.001) with small effect sizes (g = 0.22
and g = 0.35, respectively). These measures were unaf-
fected by age. Also unaffected by age were the overall Min-
iBEST scores, which improved by an average of 1.32 points
(95% CI110.767, 1.88]) with a moderate effect (g =0.51). A
breakdown of MiniBEST subscores showed improvement
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TABLE 2. 1TPBM SPECIFICATIONS

Manufacturer Vielight (Montreal, Canada)
Model Neuro Gamma v3 (2020)
Number of emitters 5

Emitter type Light-emitting diode (LED)
Center wavelength 810 nm

Spectral bandwidth Full width half max: £20.2 nm
Operating mode Pulsed

Frequency 40 Hz

Duty cycle 50%

Pulse on duration 25 ms

Aperture diameter 1 cm?

Beam shape Circular

Beam divergence
Exposure duration
Number and frequency of treatment sessions

0 degrees on contact
1200 s * 0.5 (duty cycle) = 600 s
Every other day (3—4x/week) for 8 weeks

Emitter distribution, irradiance, and energy delivered

Emitter location Target Irradiance Energy delivered
Anterior head band Midline, bilateral medial prefrontal cortex 75 mW/cm? 45]
Posterior head band Bilateral angular gyrus areas 2 x 100 mW/cm? 2x607J
Posterior head band Precuneus 100 mW/cm? 601J

Nasal applicator Olfactory bulbs and orbitofrontal cortex 25 mW/cm? 157

Energy per session (at 50% duty) 1207

Total energy over 8 weeks (3—4 sessions/week) 3360 J

itPBM, intranasal and transcranial photobiomodulation.

and moderate effect in the reactive postural control domain
(g =0.63). Grooved pegboard times for each hand improved
after treatment; however, the improvements were not statis-
tically significant and time difference was affected by age
(» <0.001, bilaterally).

Discussion

After 8—12 weeks of itPBM treatments, participants experi-
enced small to moderate effects in bilateral grip strength, reac-
tion time, and reactive postural balance, but not dexterity.

TABLE 3. SUMMARY STATISTICS FOR MOTOR ASSESSMENTS

Baseline mean (SD)

Post-Tx mean (SD) Diff mean (SD)

Measure N [95% CI] [95% CI] [95% CI] Hedge’s g
Clinical Reaction Time (ms) 43 223.0 (27.3) 203 (23.3) —19.3 (23.8) 0.75
[214.6, 231.4] [196.5, 210.8] [-26.7,—12.1]

Dom Grip (kg) 43 46.9 (12.1) 49.6 (11.8) 2.71 (6.05) 0.12
[43.2, 50.6] [46.0, 53.3] [0.84, 4.57]

Non-Dom Grip (kg) 43 44.0 (11.1) 48.1 (11.4) 3.70 (5.37) 0.16
[40.6, 47.5] [44.5,51.6] [2.03, 5.37]

Dom GPB (s) 42 77.5 (15.3) 75.4 (18.1) -2.09 (10.6) 0.22
[72.7, 82.2] [69.8, 80.9] [1.24, 1.64]

Non-Dom GPB (s) 43 83.6 (18.6) 80.3 (21.1) -3.33(11.6) 0.35
[77.7, 89.4] [73.8, 86.8] [-6.97, 0.237]

MiniBEST 43 24.7 (2.95) 26.1 (2.19) 1.33 (1.86) 0.51
[23.8,25.7] [25.4,26.7] [0.753, 1.89]

Anticipatory postural adjustment 43 5.21 (1.21) 5.39 (0.955) 0.186 (0.699)
[4.84, 5.58] [5.10, 5.69] [-0.029, 0.401]

Reactive postural control 43 4.65 (1.42) 5.47 (1.10) 814 (1.22)
[4.21, 5.09] [5.12, 5.80] [0.438, 1.19]

Sensory orientation 43 5.93 (0.258) 5.98 (0.152) 0.0465 (0.213)
[5.85,9.01] [5.93, 6.02] [-0.019, 0.112]

Dynamic gait 43 8.95 (1.11) 9.23 (0.750) 0.279 (1.03)
[8.61,9.29] [9.00, 9.46] [-0.038, 0.596]

GPB, Grooved Pegboard Test.
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TABLE 4. MIXED-EFFECTS LINEAR MODEL RESULTS

Response variable Fixed effect Fixed estimate 95% CI AIC; BIC p value
Reaction Time Age —-0.049 [-0.495, 0.396] 792; 804 0.825
Pre/Post Visit -19.38 [-26.54,—12.24] <0.001
Dom GPB Age 0.642 [0.395, 0.889] 664;676 <0.001
Pre/Post Visit -2.02 [-5.24, 1.19] 0.215
NonDom GPB Age 0.720 [0.412, 1.02] 690; 703 <0.001
Pre/Post Visit -3.27 [-6.79. 0.25] 0.068
Dom Grip Age —0.098 [-0.326, 0.129] 616; 628 0.39
Pre/Post Visit 2.70 [0.892, 4.52] 0.003
NonDom Grip Age -0.075 [<0.292, 0.141] 595; 608 0.49
Pre/Post Visit 3.73 [2.10, 5.36] <0.001
MiniBEST Score Age —-0.066 [-0.109,-0.022] 373; 385 <0.001
Pre/Post Visit 1.32 [0.767, 1.88] <0.001

These results are consistent with existing studies reporting
improvements on motor measures after tPBM. For example,
balance, gait, and grip performance improved in animal mod-
els of acute severe TBL3%7 In healthy young adults, finger
tapping frequency improved in treatment groups after 5 min of
laser tPBM (with total energy of 60 J/cm?) compared with
sham groups.>®>° Improvement in these biomarkers of health
imply that PBM may address the pathology associated with
RHAE-induced neuromuscular issues through its proposed
mechanisms.

Head impacts decrease motor unit synchronization and
recruitment because of increased excitotoxity'! which may still
be present in slowly progressing CTE resulting from RHEA %
PBM decreases excitotoxicity in in vitro animal models®'-%3
and if the same mechanism translates to human itPBM then we
might attribute improvements in grip strength and balance to
increased ability of the neuromuscular system to recruit and syn-
chronize motor units.

Cortical electrophysiology associated with neural oscillations
is disrupted by concussion®*%3 and can persist, likely because of
damaged white matter circuitry.3*0-%% This disruption affects
the synchronicity of the neural oscillations of the central nervous
system, which modulate descending motor pathways.%"°
itPBM delivery of pulsed light at 40 Hz possibly entrains gamma
brain waves, a frequency involved in motor control.67-6-7

Connectivity of cortical networks, which are disturbed in
concussion, is vital for optimal motor control. PBM-related
reductions in inflammation, along with increased energy pro-
duction, cerebral blood flow, neurogenesis, and synaptogene-
sis, may contribute to neuroplastic changes to the structural
and functional connectivity of the motor network, and thus
recovered neuromuscular control. Some have suggested that
tPBM and/or iPBM could improve motor performance in

TABLE 5. WILCOXSON’S SIGN-RANKED ANALYSIS OF
MINIBEST SUBSCORES

Test z-value p g

MiniBEST Anticipatory 0.10 0.17
Control

MiniBEST Reactive -3.52 >0.001 0.63
Postural Control

MiniBEST Static Balance 0.50 -0.23

MiniBEST Dynamic —1.64 0.10 -0.29
Balance

populations with Parkinson’s disease and Alzheimer’s disease
by affecting these mechanisms.?”-”'=73 Although the itPBM
treatments in the current study did not directly target regions in
the motor cortex in the brain, results from remote PBM
research studies where PBM was applied to an area distant
from the cortical target (e.g., the abdomen), where significant
beneficial results were observed®>3%4! provide a plausible
explanation for observed motor improvements.

Cognition, mood, and sleep positively correlate with meas-
ures of clinical motor outcomes.”*”° Thus, as itPBM-related
recovery occur in these domains,?%8! positive motor changes
are likely to follow. Such changes were observed in this cohort
in another arm of this study,?? likely contributing to improve-
ments in balance, grip strength, and reaction time.

It is important to note that although statistically significant, a
1.3-point improvement in MiniBEST scores are not necessarily
clinically significant. However, 23% of participants in our study
improved their scores by three or more points, with half of those
improving by four or more points. Changes of 3.5 points on the
MiniBEST constitute the detectable difference in a comparable
population.>? In addition, six of nine participants originally clas-
sified as moderately impaired were re-classified to normal-
to-mild impairment. Similarly, improvements in grip strength
of 2.7 and 3.7 kg in dominant and nondominant hands,
respectively, were lower than estimates of meaningful
changes of 5.0-6.5 kg.3* However, in a cross-sectional study
with almost 14,000 adults between the ages 50 and 70 years
across 150 countries, an increase of 1 kg in grip strength was
associated with a 6% higher score on a cognitive battery
that assessed visuospatial abilities, episodic memory, and
attention.*®

Although many of the significant results fall near, or just
below, the threshold for clinically important change, the uni-
formly positive change toward better performance suggests
these changes are not random. Further, these results may or
may not be clinically meaningful given the 8-week duration
and dosage, but longer interventions may demonstrate greater
improvements. The low-risk, ease of use, and low cost indi-
cate that longer itPBM interventions would be very feasible.

Limitations

This proof-of-concept study had a relatively small sample
of predominantly male (39 of 43) participants. The design
proved the feasibility of measuring changes before and after
itPBM treatments; however, to attribute such changes
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definitively to the treatment, future studies with a larger sam-
ple size and a healthy control and/or sham group is necessary.
An equitable male—female distribution is also necessary to
investigate the influence of sex on treatment effect. The his-
tory of RHIs/acceleration events was self-reported; however,
we remain confident in the reliability of the reports based on
the information from Kerr et al. (2022) that indicates the sta-
bility of self-reported concussion.3*

itPBM treatments were self-administered. There was 92%
compliance with the given treatment schedule, with several
reported short periods of inconsistent use. In addition, all par-
ticipants administered the itPBM treatment for an 8-week
period; however, because of unforeseen events and/or the diffi-
cult timing of travel, some used the itPBM devices for up to 12
weeks. Participants were also instructed to maintain current
routines; however, we did not strictly monitor or control for
any modifications in fitness or reactional activities related to
the motor outcomes of this study.

Conclusions

This study, which is a part of a larger study that included
assessments of cognitive, psychological, and structural brain
health, as well as neuromuscular health, supports our hypothesis
that itPBM applied to the brain of individuals with chronic
symptoms of RHAE has downstream effects on the neuromus-
cular system. Our results indicate that itPBM has small to mod-
erate effects on grip strength, balance, and reaction time. It is
not within the scope of this study to determine how PBM
applied on the head acts on the distal parts of the neuromuscular
system; however, motor unit recruitment resulting from reduc-
tion of excitotoxity, entrainment of disrupted neural oscillations
that control descending pathways, and improved connectivity in
the motor and cerebellar networks may be possible points of
scrutiny in future work. Such work will also require more robust
research designs to support this proof-of-concept study.
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