

# Vielight News

Accelerating photobiomodulation.



The graphic features the Vielight logo, University of Toronto logo, and Unity Health Toronto logo. A yellow button labeled "Recruiting" is present. The study title is "Infrared Light for Memory Loss in MCI (Mild Cognitive Impairment)". The text "A Study with the Vielight Neuro RX Gamma" is displayed. A photograph of a man in a lab coat wearing a Vielight Neuro device is shown.

**Infrared Light for Memory Loss in MCI (Mild Cognitive Impairment)**

A Study with the Vielight Neuro RX Gamma

## MCI Clinical Trial Recruitment (Toronto)

Do you—or someone you love—notice recent memory changes? You may be eligible for a research study at St. Michael's Hospital in Toronto with the Vielight Neuro RX Gamma.

This builds on a successful [MCI clinical study](#) with the Vielight Neuro.

- Design: **60+ participants** will use either an active or sham (placebo-like) Neuro RX Gamma device.
- Duration: 12 weeks total.
- Location: Toronto.

You may be a good fit if you:

- Are **50 years or older**, and
- Have noticed **memory changes**, without a formal diagnosis of MCI or dementia.
- You are able to undergo a **blood test and an MRI scan** (Exceptions for undergoing MRI may be allowed)

If you're unsure, the study team can guide you through a brief screening to check eligibility.

Ready to learn more or sign up?  
Phone: 416-360-4000 ext. 47838  
Email: [memoryclinic@unityhealth.to](mailto:memoryclinic@unityhealth.to)

## Newsletter Highlights

**Mild Cognitive Impairment Study Recruitment**


**Vielight Neuro vs 1070nm Helmet**  
**Real Human Skull Comparison**

**Vielight NOMS Conference Success!**

**NEWSLETTER ARCHIVE**



The logo consists of a stylized four-pointed star above the word "VIELIGHT" in a bold, sans-serif font.



▶ WATCH NOW

## Vielight Neuro vs 1070nm Helmet | Real Human Skull | Qualitative Comparison

This is a simple, [replicable qualitative demonstration](#) that highlights the penetration differences between Vie-LED technology and a 1070nm helmet on a real human skull's calvaria.

This test captures the near-infrared (NIR) energy footprint of the Vielight Neuro Pro 2 and a 1070nm helmet using a real human skull. The human eye cannot see the 810nm and 1070nm wavelengths, which requires a camera with little IR filtering to perceive the photonic intensity.

In a [published systematic review](#) of over [2000 brain PBM studies](#), the average irradiance was 250 mW/cm<sup>2</sup> and wavelength was 810nm. What happens when a helmet incorporates hundreds of 1070 nm LEDs in the weaker 9 mW/cm<sup>2</sup> irradiance range? (set to "Glow" mode)

This also gives real-world practical application behind the [PBM Foundation's brain PBM device irradiance tests for their device testing platform](#).



## Vielight Neuroscience of Meditation Event Success!

It is with immense gratitude and excitement that we reflect on the profound success of the recent Vielight Neuroscience of Meditation (NOMS) conference. This landmark event, held at the prestigious University of Toronto's Innovation Campus, brought together over **200 people** and researchers from Oxford University, Harvard Medical School and the University of Toronto.

▶ WATCH NOW